Multifunctional photonic switching operation of 1500 nm Y-coupled cavity laser (YCCL) with 28 nm tuning capability

Abstract
The authors present new results on extended electrical tuning, fast spatial switching, and optically controlled wavelength conversion characteristics for the recently developed InP-based Y-laser structure. The devices have a 80 nm thick bulk InGaAsP active layer and are completely grown by metalorganic vapor phase epitaxy. The facets at both ends of the chip are as-cleaved without antireflective coating. The addressable range for electrically controlled wavelength switching was extended to the record value of 28 nm. When operated as a lossless 1:2 optical space switch, fiber-to-fiber gain >0 dB, extinction ratio >50 dB and high speed operation up to 1 Gb/s were shown. Optically triggered tunable wavelength conversion including dynamic operation was also demonstrated.