VITAMIN D DERIVATIVES IN COMBINATION WITH 9-cis RETINOIC ACID PROMOTE ACTIVE CELL DEATH IN BREAST CANCER CELLS

Abstract
The effects of the novel vitamin D analogue, EB1089 alone, or in combination with the retinoid, 9-cis retinoic acid (9-cis RA) on indices of apoptosis in MCF-7 breast cancer cells have been examined. EB1089 was capable of reducing bcl-2 protein, a suppressor of apoptosis, and increasing p53 protein levels in MCF-7 cell cultures following 96h treatment. In the presence of 9-cis RA, EB1089 acted to further enhance the down-regulation and up-regulation of bcl-2 and p53 respectively. Furthermore, EB1089 induces DNA fragmentation in MCF-7 cells, a key feature of apoptosis, alone and in combination with 9-cis RA in situ. The observation that EB1089 and 9-cis RA act in a cooperative manner to enhance induction of apoptosis in these cells may have therapeutic implications.