Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni

Abstract
The adiabatic theory of spin-density waves is developed on the basis of spin-density-functional theory. The wave-number-dependent exchange constant matrix is obtained from spin-density-functional calculations with constrained moment directions. The central assumption considers a fast electronic and a slow magnetic time scale, and postulates negligible correlation of the fast motion between different ionic sites. The parameter-free calculated magnon spectra for Fe, Co, and Ni are in excellent agreement with available experimental data. In the case of Fe, they show strong Kohn anomalies. Using Planck statistics at low temperature, the temperature dependence of the magnetization is well described up to half the Curie temperature. It is conjectured that correlated local-moment clusters survive the Curie transition. On this basis, calculated Curie temperatures are obtained within 10% deviation from experiment for Fe and Co, but 30% to low for Ni.