Noradrenaline Unmasks Novel Self-Reinforcing Motor Circuits within the Mammalian Spinal Cord

Abstract
Spiking activity in motor axons represents the final central coding for muscle contraction. Recurrent collaterals in spinal cord from these same axons are known to offer a negative feedback control of motor output via a class of interposed inhibitory interneurons. Here we demonstrate that, during noradrenergic drive, a previously unknown recurrent excitatory pathway is unmasked and expressed. These excitatory projections are shown to have broad bilateral actions within and between hindlimb spinal segments and can alter ongoing pattern-generating motor behaviors. Thus, motor output strength is controlled via central positive and negative feedback loops, undoubtedly to provide a greater flexibility and dynamic range of control. That this novel function is regulated by a descending neuromodulatory transmitter indicates a conditional recruitment during certain behavioral states as part of the central noradrenergic arousal apparatus.