Tetraspanin12 regulates ADAM10‐dependent cleavage of amyloid precursor protein

Abstract
Using mass spectrometry, we identified ADAM10 (a membrane-associated metalloproteinase) as a partner for TSPAN12, a tetraspanin protein. TSPAN12-ADAM10 interaction was confirmed by reciprocal coimmunoprecipitation in multiple tumor cell lines. TSPAN12, to a greater extent than other tetraspanins (CD81, CD151, CD9, and CD82), associated with ADAM10 but not with ADAM17. Overexpression of TSPAN12 enhanced ADAM10-dependent shedding of amyloid precursor protein (APP) in MCF7 (breast cancer) and SH-SY5Y (neuroblastoma) cell lines. Conversely, siRNA ablation of endogenous TSPAN12 markedly diminished APP proteolysis in both cell lines. Furthermore, TSPAN12 overexpression enhanced ADAM10 prodomain maturation, whereas TSPAN12 ablation diminished ADAM10 maturation. A palmitoylation-deficient TSPAN12 mutant failed to associate with ADAM10, inhibited ADAM10-dependent proteolysis of APP, and inhibited ADAM10 maturation, most likely by interfering with endogenous wild-type TSPAN12. In conclusion, TSPAN12 serves as a novel and robust partner for ADAM10 and promotes ADAM10 maturation, thereby facilitating ADAM10-dependent proteolysis of APP. This novel mode of regulating APP cleavage is of relevance to Alzheimer's disease therapy.
Funding Information
  • National Institutes of Health (GM38903, CA102034)