The eye's mind: brain mapping and psychiatry

Abstract
But this hasn't happened yet. Despite the extraordinary technical developments in neuroimaging ( Andreasen, 1997), scepticism is common with respect to its impact on psychiatry. What has imaging told us about schizophrenia, for example, that we did not already know? Why has imaging been largely irrelevant to our understanding of causation in psychiatry? Why has imaging made no difference to the clinician? These are important questions for neuroimaging researchers to address sincerely. After all, the expense of imaging has often been justified by the promise of clinical benefit. We need to be clear about the impact of imaging on psychiatry so far and the prospects for brain mapping and psychiatry in the future. In what follows, we focus predominantly on studies using magnetic resonance imaging (MRI) to measure brain structure or function, because the safety and versatility of MRI make it the pre-eminent form of imaging in psychiatry. However, there is important complementary information to be gained by other methods. Radioligand studies using positron emission tomography (PET) can provide otherwise inaccessible information about receptor density and endogenous transmitter release ( Abi-Dargham et al, 2000). Electrophysiological techniques have better temporal resolution than functional MRI (fMRI) and impose a less constrained environment for psychological experiments. One future trend of interest will be the development of integrated or multi-modal imaging techniques, for example combining PET, fMRI and electrophysiological measurements in comprehensive investigations of all accessible aspects of human brain organisation in vivo ( Dale & Halgren, 2001). However, at least in relation to psychiatry, such technical achievements are not necessarily rate-limiting: as we aim to show below, the critical factors have more to do with the ‘goodness’ of the questions we use imaging to address, which relates to the problems inherent in using 21st-century methods to investigate the biological correlates of 19th- and early 20th-century nosology.