Life-Cycle-based Solid Waste Management. I: Model Development

Abstract
This paper describes an integrated solid waste management (ISWM) model to assist in identifying alternative SWM strategies that meet cost, energy, and environmental emissions objectives. An SWM system consisting of over 40 unit processes for collection, transfer, separation, treatment (e.g., combustion, composting), and disposal of waste as well as remanufacturing facilities for processing recycled material is defined. Waste is categorized into 48 items and their generation rates are defined for three types of sectors: single-family dwelling, multifamily dwelling, and commercial. The mass flow of each item through all possible combinations of unit processes is represented in a linear programming model using a unique modeling approach. Cost, energy consumption, and environmental emissions associated with waste processing at each unit process are computed in a set of specially implemented unit process models. A life-cycle approach is used to compute energy consumption and emissions of CO, fossil- and biomass-derived CO2,NOx,SOx, particulate matter, PM10 and greenhouse gases. The model is flexible to allow representation of site-specific issues, including waste diversion targets, mass flow restrictions and requirements, and targets for the values of cost, energy, and each emission. A companion paper describes the application of this model to examine several SWM scenarios for a hypothetical, but realistic, case study.

This publication has 25 references indexed in Scilit: