The Effects of Stimulation Pattern and Sevoflurane Concentration on Intraoperative Motor-Evoked Potentials

Abstract
The usefulness of intraoperative monitoring of motor-evoked potentials (MEPs) during inhaled anesthesia is limited by the suppressive effects of volatile anesthetics on MEP signals. We investigated the effects of different stimulation patterns and end-tidal concentrations of sevoflurane on intraoperative transcranial electrical MEPs. In 12 patients undergoing craniotomy, stimulation patterns (300–500 V, 100–1000 Hz, 1–5 stimuli) and multiples (0.5, 0.75, and 1.0) of minimum alveolar concentration (MAC) of sevoflurane were varied randomly while remifentanil was administered at a constant rate of 0.2 μg · kg−1 · min−1. MEPs were recorded from thenar and hypothenar muscles and analyzed without knowledge of the respective MAC. Three-way analysis of variance revealed significant main effects for increasing stimulation intensity, frequency, and number of stimuli on MEP amplitude (P < 0.05). Maximum MEP amplitudes and recording success rates were observed during 4 stimuli delivered at 1000 Hz and 300 V. A significant main effect of sevoflurane concentration (0.5 versus 0.75 and 1 MAC multiple) on MEP amplitude was observed at the thenar recording site only (P < 0.05). In conclusion, MEP characteristics varied significantly with changes in stimulation pattern and less so with changes in sevoflurane concentration. The results suggest that high frequency repetitive stimulation allows intraoperative use of MEP monitoring during up to 1 MAC multiple of sevoflurane and constant infusion of remifentanil up to 0.2 μg · kg−1 · min−1.