Seismic Collapse Safety of Reinforced Concrete Buildings. II: Comparative Assessment of Nonductile and Ductile Moment Frames

Abstract
This study is the second of two companion papers to examine the seismic collapse safety of reinforced concrete frame buildings, and examines nonductile moment frames that are representative of those built before the mid-1970s in California. The probabilistic assessment relies on nonlinear dynamic simulation of structural response to calculate the collapse risk, accounting for uncertainties in ground-motion characteristics and structural modeling. The evaluation considers a set of archetypical nonductile RC frame structures of varying height that are designed according to the seismic provisions of the 1967 Uniform Building Code. The results indicate that nonductile RC frame structures have a mean annual frequency of collapse ranging from 5 to 14×10-3 at a typical high-seismic California site, which is approximately 40 times higher than corresponding results for modern code-conforming special RC moment frames. These metrics demonstrate the effectiveness of ductile detailing and capacity design requirements, which have been introduced over the past 30 years to improve the safety of RC buildings. Data on comparative safety between nonductile and ductile frames may also inform the development of policies for appraising and mitigating seismic collapse risk of existing RC frame buildings.