Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain

Abstract
The D* Raman band of single-wall carbon nanotubes aligned by shear flow in a polymer matrix has been measured as a function of tensile strain. The Raman intensity varies with the optical polarization direction, an effect which is used here to assess the degree of tube alignment. The strain dependence of the Raman shift depends strongly on the nanotube orientation and the polarization direction. We show that, using polarized light, unoriented nanotubes can be used as strain sensors so that no tube alignment is necessary and the strain can be measured in all directions in a single sample.