A Nonneutralizing Anti-HIV Type 1 Antibody Turns into a Broad Neutralizing Antibody When Expressed on the Surface of HIV Type 1-Susceptible Cells. II. Inhibition of HIV Type 1 Captured and Transferred by DC-SIGN

Abstract
Previously, we demonstrated that the expression of a nonneutralizing human anti-HIV-1 gp41 scFv on the surface of HIV-1-susceptible cells markedly inhibits HIV-1 replication and HIV-1 envelope-mediated cell–cell fusion. The inhibition is at the level of viral entry, specific for the HIV-1 envelope, and independent of virus tropism. In the previous studies, cell-free viruses of laboratory-adapted HIV-1 strains from subtype B were used to infect human CD4 T cell lines. To further test the effectiveness of this membrane-bound scFv (m-scFv) on HIV-1 infection, in this study, we carried out experiments to determine whether the m-scFv can neutralize infection of primary isolates from various HIV-1 subtypes and whether the m-scFv can neutralize HIV-1 captured and transferred by DC-SIGN on the surface of monocytic cell lines or DCs. We demonstrated that the m-scFv markedly inhibits primary isolates derived from various subtypes and significantly blocks HIV-1 captured and transferred by DC-SIGN on monocytic cell lines and on human DCs. Therefore, a nonneutralizing antibody acts as a broad neutralizing antibody when expressed on the cell surface, which significantly inhibits infection of both cell-free and DC-SIGN-captured and transferred virus. Our studies further point out the potential use of m-scFv as a inhibitor against HIV-1 transmission as well as a tool to dissect the mechanism of HIV-1 entry via DC-SIGN capture and transfer to CD4 T cells.

This publication has 45 references indexed in Scilit: