Formation of Uniform CuO Nanorods by Spontaneous Aggregation: Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid−Liquid Phase Arc Discharge Process

Abstract
Uniform and monodisperse CuO nanorods have been synthesized by directional aggregation and crystallization of tiny CuO nanoparticles generated from a solid−liquid arc discharge process under ambient conditions in the absence of any surfactants. Uniform CuO nanorods with sharp ends are formed from tiny nanoparticles via a process that involves the rapid oxidation of Cu nanoclusters, the spontaneous aggregation of CuO nanoparticles, and the Ostawald ripening process. The spontaneous aggregation and oriented attachment of tiny CuO nanoparticles contributed obviously to the formation of these kinds of nanostructures. By choice of suitable reducing agent to prevent the oxidation of Cu nanoclusters, Cu and Cu2O nanoparticles can be selectively synthesized.