Novel Direct Current-Space-Vector Controlfor Shunt Active Power Filters Basedon the Three-Level Inverter

Abstract
The growing number of electric drives with non-sinusoidal line currents has given increased interest in active power filters (APF), to avoid grid problems caused by harmonic distortions. In this paper, a novel direct current-space-vector control scheme (DCSVC) is presented for a three-level, neutral-point-clamped voltage source inverter, which is employed as an active power filter. The proposed method generates the compensation current reference indirectly generating an equivalent ohmic conductance for the fundamental component by means of the APF's DC-link voltage control. Based on the fast Fourier transform the compensation of the reactive fundamental current and selectable harmonics can be cancelled, confining the operation to only harmonic compensation and thus saving the APF's apparent power. The novel DCSVC, operating in synchronously rotating coordinates is implemented in a field programmable gate array, realizing the switching states from switching tables. The proposed control reduces the average switching frequency and thus, the switching power loss significantly, compared with a previous DCSVC, operating in stationary coordinates. Simulation and experimental results validate the feasibility and highly dynamic performance of the proposed control, both for harmonic and total non-active current compensation.

This publication has 16 references indexed in Scilit: