Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923–2007)

Abstract
We have modified the new method for the statistical estimation of the tail distribution of earthquake seismic moments introduced by Pisarenko et al. (2009) and applied it to the earthquake catalog of Japan (1923–2007). The newly modified method is based on the two main limit theorems of the theory of extreme values and on the derived duality between the generalized Pareto distribution (GPD) and the generalized extreme value distribution (GEV). Using this method, we obtain the distribution of maximum earthquake magnitudes in future time intervals of arbitrary duration τ. This distribution can be characterized by its quantile Qq (τ) at any desirable statistical level q. The quantile Qq(τ) provides a much more stable and robust characteristic than the traditional absolute maximum magnitude Mmax (Mmax can be obtained as the limit of Qq(τ) as q → 1, τ → ∞). The best estimates of the parameters governing the distribution of Qq(τ) for Japan (1923–2007) are the following: ξGEV = −0.19 ± 0.07; μGEV(200) = 6.339 ± 0.038; σGEV (200) = 0.600 ± 0.022; Q0.90,GEV(10) = 8.34 ± 0.32. We have also estimated Qq(τ) for a set of q-values and future time periods in the range 1 ≤ τ ≤ 50 years from 2007 onwards. For comparison, the absolute maximum estimate Mmax-GEV = 9.57 ± 0.86 has a scatter more than twice that of the 90% quantile Q0.90,gev(10) of the maximum magnitude over the next 10 years beginning from 2007.