Efficacy of partial liquid ventilation in improving acute lung injury induced by intratracheal acidified infant formula: Determination of optimal dose and positive end-expiratory pressure level

Abstract
Partial liquid ventilation with fluorocarbon was successfully used for acute lung injury induced by oleic acid or lung lavage. Positive end-expiratory pressure (PEEP) during partial liquid ventilation enhances the efficacy of fluorocarbon. The aim of the current study was to assess whether partial liquid ventilation can repair lung damage induced by intratracheal acidified infant formula and to determine the optimal fluorocarbon dose and PEEP level. Prospective, randomized animal study. University research laboratory. Seventy-six male anesthetized rabbits. For study 1, acute lung injury was induced by intratracheal acidified infant formula in four groups. Next, three groups received 10, 15, or 20 mL/kg fluorocarbon, and the fourth group was conventionally gas ventilated. For study 2, acute lung injury was induced in five groups. One group was gas ventilated at a PEEP of 5 cm H2O, whereas the other four groups received fluorocarbon (15 mL/kg) and were assigned to one of four PEEP levels (5, 7.5, 10, or 12.5 cm H2O). The lungs were ventilated with 100% oxygen for 4 hrs after acute lung injury. In study 1, fluorocarbon at doses of 15 and 20 mL/kg attenuated lung leukosequestration and edema and superoxide production of neutrophils, resulting in similar improvements in oxygenation, lung mechanics, and pathologic changes. The highest fluorocarbon dose caused mortality from pneumothorax. In study 2, the combination of PEEP with partial liquid ventilation improved gas exchange, lung compliance, pulmonary edema, and histologically observed damage. The beneficial effects of PEEP at 10 and 12.5 cm H2O were similar. Adverse side effects of 12.5 cm H2O PEEP included pneumothorax and hemodynamic instability. The combination of fluorocarbon and PEEP improved the physiologic, biochemical, and histologic lung injury induced by acidified infant formula. The beneficial effects of partial liquid ventilation are due, in part, to inhibition of pulmonary neutrophil accumulation and activation with fluorocarbon. The optimal fluorocarbon dose and PEEP level in our model were 15 mL/kg and 10 cm H2O, respectively.