Mechanically Adjustable and Electrically Gated Single-Molecule Transistors

Abstract
We demonstrate a device geometry for single-molecule electronics experiments that combines both the ability to adjust the spacing between the electrodes mechanically and the ability to shift the energy levels in the molecule using a gate electrode. With the independent in-situ variations of molecular properties provided by these two experimental “knobs”, we are able to achieve a much more detailed characterization of electron transport through the molecule than is possible with either technique separately. We illustrate the performance of the device using C60 molecules.