DNA‐, rRNA‐ and mRNA‐based stable isotope probing of aerobic methanotrophs in lake sediment

Abstract
A stable isotope probing (SIP) approach was used to study aerobic methane-oxidizing bacteria (methanotrophs) in lake sediment. Oligotrophic Lake Stechlin was chosen because it has a permanently oxic sediment surface. 16S rRNA and the pmoA gene, which encodes a subunit of the methane monooxygenase enzyme, were analysed following the incubation of sediment with 13CH4 and the separation of 13C-labelled DNA and RNA from unlabelled nucleic acids. The incubation with 13CH4 was performed over a 4-day time-course and the pmoA genes and transcripts became progressively labelled such that approximately 70% of the pmoA genes and 80% of the transcripts were labelled at 96 h. The labelling of pmoA mRNA was quicker than pmoA genes, demonstrating that mRNA-SIP is more sensitive than DNA-SIP; however, the general rate of pmoA transcript labelling was comparable to that of the pmoA genes, indicating that the incorporation of 13C into ribonucleic acids of methanotrophs was a gradual process. Labelling of Betaproteobacteria was clearly seen in analyses of 16S rRNA by DNA-SIP and not by RNA-SIP, suggesting that cross-feeding of the 13C was primarily detected by DNA-SIP. In general, we show that the combination of SIP approaches provided valuable information about the activity and growth of the methanotrophic populations and the cross-feeding of methanotroph metabolites by other microorganisms.

This publication has 75 references indexed in Scilit: