TNF-α-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent

Abstract
TNF-α cytotoxic signaling involves lysosomal permeabilization with release of the lysosomal protease cathepsin B (ctsb) into the cytosol. However, the mechanisms mediating lysosomal breakdown remain unclear. Because caspase-8 and factor associated with neutral sphingomyelinase activation (FAN) have been implicated as proximal mediators of TNF-α-associated apoptosis, their role in lysosomal permeabilization was examined. Cellular distribution of ctsb-green fluorescent protein (ctsb-GFP) in a rat hepatoma cell line was imaged by confocal microscopy. ctsb-GFP fluorescence was punctate under basal conditions but became diffuse after treatment with TNF-α/actinomycin D. This cellular redistribution of ctsb-GFP was blocked by transfection with a vector expressing a dominant-negative Fas-associated protein with death domain (ΔFADD), cytokine response modifier A, or a pharmacological caspase-8 inhibitor, IETD-fmk. Consistent with the concept that caspase 8-mediated apoptosis is also Bid-dependent in hepatocytes, ctsb-GFP release from lysosomes was reduced in hepatocytes from Bid −/− mice. Interestingly, transfection with a vector expressing a dominant-negative FAN (ΔFAN) also blocked ctsb-GFP release and caspase-8 activation. Paradigms that inhibited ctsb-GFP release from lysosomes also reduced apoptosis as assessed by morphology and biochemical criteria. In conclusion, these studies suggest FAN is upstream of caspase-8/Bid in a signaling cascade culminating in lysosomal permeabilization.