Internet-Based Photoaging Within Australian Pharmacies to Promote Smoking Cessation: Randomized Controlled Trial

Abstract
Background: Tobacco smoking leads to death or disability and a drain on national resources. The literature suggests that cigarette smoking continues to be a major modifiable risk factor for a variety of diseases and that smokers aged 18-30 years are relatively resistant to antismoking messages due to their widely held belief that they will not be lifelong smokers. Objective: To conduct a randomized controlled trial (RCT) of a computer-generated photoaging intervention to promote smoking cessation among young adult smokers within a community pharmacy setting. Methods: A trial was designed with 80% power based on the effect size observed in a published pilot study; 160 subjects were recruited (80 allocated to the control group and 80 to the intervention group) from 8 metropolitan community pharmacies located around Perth city center in Western Australia. All participants received standardized smoking cessation advice. The intervention group participants were also digitally photoaged by using the Internet-based APRIL Face Aging software so they could preview images of themselves as a lifelong smoker and as a nonsmoker. Due to the nature of the intervention, the participants and researcher could not be blinded to the study. The main outcome measure was quit attempts at 6-month follow-up, both self-reported and biochemically validated through testing for carbon monoxide (CO), and nicotine dependence assessed via the Fagerström scale. Results: At 6-month follow-up, 5 of 80 control group participants (6.3%) suggested they had quit smoking, but only 1 of 80 control group participants (1.3%) consented to, and was confirmed by, CO validation. In the intervention group, 22 of 80 participants (27.5%) reported quitting, with 11 of 80 participants (13.8%) confirmed by CO testing. This difference in biochemically confirmed quit attempts was statistically significant (χ 2 1 =9.0, P =.003). A repeated measures analysis suggested the average intervention group smoking dependence score had also significantly dropped compared to control participants ( P <.001). These differences remained statistically significant after adjustment for small differences in gender distribution and nicotine dependence between the groups. The mean cost of implementing the intervention was estimated at AU $5.79 per participant. The incremental cost-effectiveness ratio was AU $46 per additional quitter. The mean cost that participants indicated they were willing to pay for the digital aging service was AU $20.25 (SD 15.32). Conclusions: Demonstrating the detrimental effects on facial physical appearance by using a computer-generated simulation may be both effective and cost-effective at persuading young adult smokers to quit. Trial Registration: Australian New Zealand Clinical Trials Registry: ACTRN12609000885291; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12609000885291 (Archived by WebCite at http://www.webcitation.org/6F2kMt3kC) [J Med Internet Res 2013;15(3):e64]