The Development and Characterization of an Organotypic Tissue-Engineered Human Esophageal Mucosal Model

Abstract
There is a demand for a reliable three-dimensional tissue-engineered model of the esophageal mucosa for use as an experimental platform for investigating esophageal epithelial biology and the pathogenesis of esophageal neoplasia and precursor lesions such as Barrett's metaplasia. A number of models have been described, but there has been little systematic assessment of the different approaches, making selection of a preferred platform difficult. This study assesses the properties of organotypic cultures using four different scaffolds (human esophageal matrix, porcine esophageal matrix, human dermal matrix, and collagen) and two different epithelial cell types (primary human esophageal squamous cells and the Het-1A esophageal squamous cell line). Human esophageal matrix and dermis did not give consistent results, but porcine esophageal matrix and collagen proved more reliable and were studied in greater detail. Both matrices supported the formation of a mature stratified epithelium that was similar to that of the normal human esophagus, demonstrated by Ki67, CK4, CK14, and involucrin staining. However, collagen showed reduced epithelial adherence, while fibroblast penetration into the porcine matrix was poor. Composite cultures using Het-1A cells formed a hyperproliferative epithelium with no evidence of differentiation. We propose human esophageal squamous cells seeded onto porcine esophageal matrix as the preferred model of the normal human esophagus.