Cooperative interaction between mutant p53 and des(1-3)IGF-I accelerates mammary tumorigenesis

Abstract
Mammary tumorigenesis was analysed in transgenic mice which overexpress des(1-3)hIGF-I (WAP-DES) and/or a mutant form of p53 (p53172R-H). Nonlactating, multiparous WAP-DES mice exhibited hyperplastic lesions termed mammary interepithelial neoplasia (MIN) which constitutively expressed WAP-DES. By 23 months of age, 53% of the WAP-DES mice developed mammary adenocarcinomas. A 75% reduction in both apoptosis and proliferation was observed in the normal mammary glands of WAP-DES mice. Mammary tumor incidence in WAP-DES/p53 bitransgenic mice was similar to that of WAP-DES and 2–3-fold greater than that of nontransgenic and p53172R-H females. Tumor latency, however, was reduced by 8 months in bitransgenic mice as compared to mice of the other three genotypes. Aneuploidy was frequently observed in tumors from bitransgenic and p53172R-H mice, but not from mice expressing only the WAP-DES transgene. Expression of IGFBP3 was elevated in tumors from WAP-DES, but not bitransgenic mice, indicating an alteration in the p53/IGF-I axis. These studies indicate that overexpression of des(1-3)hIGF-I increases the frequency of MIN and stochastic mammary tumors and that the appearance of tumors displaying genomic instability is accelerated by mutant p53172R-H.