Abstract
Substrate integrated waveguide (SIW) technology provides an attractive solution to the integration of planar and nonplanar circuits by using a planar circuit fabrication process. However, it is usually difficult to implement the negative coupling structure required for the design of compact canonical folded elliptic or quasi-elliptic cross-coupled bandpass filter on the basis of a single-layer SIW. In this paper, a special planar negative coupling scheme including a magnetic coupling post-wall iris and a balanced microstrip line with a pair of metallic via-holes is studied in detail. Two -band fourth-degree cross-coupled bandpass filters without and with source-load coupling using the negative coupling structures are then proposed and designed. The two novel SIW filters having the same center frequency of 20.5 GHz and respective passband width of 700 and 800 MHz are implemented on a single-layer Rogers RT/Duroid 5880 substrate with thickness of 0.508 mm. Measured results of those filters, which exhibit a high selectivity, and a minimum in-band insertion loss of approximately 0.9 and 1.0 dB, respectively, agree well with simulated results.

This publication has 19 references indexed in Scilit: