A New Collision Resolution Mechanism to Enhance the Performance of IEEE 802.11 DCF

Abstract
The medium-access control (MAC) protocol is one of the key components in wireless local area networks (WLANs). The main features of a MAC protocol are high throughput, good fairness, energy efficiency, and support priority guarantees, especially under distributed contention-based environment. Based on the current standardized IEEE 802.11 distributed coordination function (DCF) protocol, this paper proposes a new efficient collision resolution mechanism, called GDCF. Our main motivation is based on the observation that 802.11 DCF decreases the contention window to the initial value after each success transmission, which essentially assumes that each successful transmission is an indication that the system is under low traffic loading. GDCF takes a more conservative measure by halving the contention window size after c consecutive successful transmissions. This "gentle" decrease can reduce the collision probability, especially when the number of competing nodes is large. We compute the optimal value for c and the numerical results from both analysis and simulation demonstrate that GDCF significantly improve the performance of 802.11 DCF, including throughput, fairness, and energy efficiency. In addition, GDCF is flexible for supporting priority access by selecting different values of c for different traffic types and is very easy to implement it, as it does not requires any changes in control message structure and access procedures in DCF.

This publication has 9 references indexed in Scilit: