Insulin-Like Growth Factor I Has Independent Effects on Bone Matrix Formation and Cell Replication*

Abstract
The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of [2,3-3H]proline and [methyl-3H]thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on [3H]proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on [3H]thymidine incorporation into acid-precipitable material (DNA). IGF-I at 10-9-10-7 M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10-9-10-6 M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10-7 M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.