Development of chorda tympani taste responses in rat

Abstract
To learn whether neurophysiological taste responses change during structural development of the gustatory system, we recorded from the chorda tympani nerve in rats aged 7 to 92 days after birth. Chemical stimuli applied to the anterior tongue included four monochloride salts, two acids, sucrose, and urea. Responses to all chemicals were obtained as early as 7 days postnatally. Developmental changes in salt, acid, and sucrose responses were observed. Relative to NaCl and LiCl, NH4Cl and KCl gradually decrease in effectiveness as taste stimuli; or, relative to NH4Cl and KCl, NaCl and LiCl become more effective stimuli. These changes are similar to those observed prenatally and postnatally in sheep. Also, relative to NaCl, citric acid, hydrochloric acid, and sucrose become less effective stimuli; or, NaCl becomes more effective as a stimulus, relative to these acids and sucrose. The period of most rapid functional change overlaps a period of rapid structural change. It seems most reasonable to hypothesize that the altering taste responses reflect developmental changes in receptor membrane composition. Since the taste system is not programmed to respond in a mature manner from the moment function begins, there is ample opportunity for changing taste experience to influence the developing taste system.