High-transconductance graphene solution-gated field effect transistors

Abstract
In this work, we report on the electronic properties of solution-gated field effect transistors (SGFETs) fabricated using large-area graphene. Devices prepared both with epitaxially grown graphene on SiC as well as with chemical vapor deposition grown graphene on Cu exhibit high transconductances, which are a consequence of the high mobility of charge carriers in graphene and the large capacitance at the graphene/water interface. The performance of graphene SGFETs, in terms of gate sensitivity, is compared to other SGFET technologies and found to be clearly superior, confirming the potential of graphene SGFETs for sensing applications in electrolytic environments.