Hydrophilicity and the Viscosity of Interfacial Water

Abstract
We measure the viscosity of nanometer-thick water films at the interface with an amorphous silica surface. We obtain viscosity values from three different measurements: friction force in a water meniscus formed between an oxide-terminated W tip and the silica surface under ambient conditions; similar measurements for these interfaces under water; and the repulsive "drainage" force as the two surfaces approach at various speeds in water. In all three cases, we obtain effective viscosities that are approximately 10(6) times greater than that of bulk water for nanometer-scale interfacial separations. This enhanced viscosity is not observed when we degrade the hydrophilicity of the surface by terminating it with -H or -CH3. In view of recent results from other interfaces, we conclude that the criterion for the formation of a viscous interphase is the degree of hydrophilicity of the interfacial pair.