Serum-induced inhibition of myogenesis is differentially relieved by retinoic acid and triiodothyronine in C2 murine muscle cells

Abstract
We recently reported that triiodothyronine (T3) enhances MyoD gene expression and accelerates terminal differentiation in murine C2 myoblasts. In this paper, we are interested in the effects of other hormones acting through related nuclear receptors. Retinoic acid (RA), but not estradiol or dexamethasone, is also able to enhance MyoD gene expression (about threefold). However, the effects of RA and T3 on myogenesis are quite distinct, with a much more potent RA action. In deed, although T3 and RA positively regulate myogenesis with similar efficiency in poorly mitogenic conditions, in presence of high serum concentrations T3 can no longer trigger terminal differentiation whereas RA still remains efficient. Thus, serum concentration is a crucial parameter in discriminating between the effects of T3 and RA on myogenesis. The differential effects between these two hormone are likely to be related to the ability of RA-activated endogenous retinoic acid receptors (RARs) to induce C2 myoblasts growth-arrest and to extinguish AP1 activity (thought to act as an inhibitor of myogenesis) whereas T3-activated endogenous thyroid hormones receptors (THRs) are relatively inefficient. We propose that the much higher level of RARs in C2 cells versus THRs could to some extent account for the differential ability of T3 and RA to antagonize serum-regulated mitogenic pathways in myogenic cells. This study provides clear evidence for an important role of RA on MyoD gene expression and myogenesis and suggests that T3 and RA could play overlapping, but distinct, roles on muscle development.