γ-Aminobutyric acid immunoreactivity in multiple cell types of the developing rabbit retina

Abstract
We have previously demonstrated that the neonatal rabbit retina contains a larger complement of cells that accumulate [3H]-GABA than does the adult. In order for these neurons to be classified as GABAergic, they must also contain endogenous GABA. We now report that these same neonatal cell populations are also immunoreactive to GABA antisera. In frozen sections from rabbit retina, treated with GABA antisera, immunoreactive processes in both synaptic layers were observed at postnatal day 1. The appearance of immunofluorescent fibers precedes that of photoreceptor and bipolar cell terminals in the outer plexiform layer and is diminished by postnatal day 5. Also noted, was a 50% decrease in the density of GABA-immunoreactive cell bodies in the inner nuclear and ganglion cell layers, accompanied by an increase in cell volume and a shift toward a more spherical cell shape of the remaining cells. At postnatal day 1 and 3, we also observed immunoreactive cells having the characteristic morphology of interplexiform cells. This cell type sends branches to both the outer and inner plexiform layers, thus a morphological basis for communication between the two developing plexiform layers is present as early as postnatal day 1. Thus, retinas from neonatal rabbits have a larger complement of cells that stain for endogenous GABA than does the adult. These results coupled with our previous studies suggest that GABAergic properties are expressed by a larger number of cell types in the neonate than in the adult and are consistent with the general hypothesis that GABA functions as a trophic agent during development.