1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3

Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), has potent immunomodulatory properties that have promoted its potential use in the prevention and treatment of infectious disease and autoimmune conditions. A variety of immune cells, including macrophages, dendritic cells, and activated T cells express the intracellular vitamin D receptor and are responsive to 1,25(OH)2D3. Despite this, how 1,25(OH)2D3 regulates adaptive immunity remains unclear and may involve both direct and indirect effects on the proliferation and function of T cells. To further clarify this issue, we have assessed the effects of 1,25(OH)2D3 on human CD4+CD25 T cells. We observed that stimulation of CD4+CD25 T cells in the presence of 1,25(OH)2D3 inhibited production of proinflammatory cytokines including IFN- γ, IL-17, and IL-21 but did not substantially affect T cell division. In contrast to its inhibitory effects on inflammatory cytokines, 1,25(OH)2D3 stimulated expression of high levels of CTLA-4 as well as FoxP3, the latter requiring the presence of IL-2. T cells treated with 1,25(OH)2D3 could suppress proliferation of normally responsive T cells, indicating that they possessed characteristics of adaptive regulatory T cells. Our results suggest that 1,25(OH)2D3 and IL-2 have direct synergistic effects on activated T cells, acting as potent anti-inflammatory agents and physiologic inducers of adaptive regulatory T cells.

This publication has 67 references indexed in Scilit: