Abstract
The use of collisional-activation dissociation (CAD) in the electrospray region was evaluated for generating structural information on several pesticides and antibiotics. The collision energy used to generate the CAD spectra could be varied easily by changing the capillary/skimmer potential difference, imparting fromOeV to above 16 eV internal energy to the near thermal ions generated by electrospray, The internal energy distribution for low-energy collisions (capillary/skimmer potential difference of 20 V) closely matches the curves generated by a triple-quadrupole mass spectrometer. Furthermore, the CAD spectra for selected compounds generated by electrospray in the transport region at a capillary/skimmer potential differences of 30–50 V closly resembled those obtained from the [M + H]+ ion by a triple quadrupole using 30eV collision energy. The CAD of ions in the transport region resulted in 70% to 80% daughter-ion yields and minimal loss in overall ion current compared to the ion current for protonated or cationized parent molecules. The major daughter ions for 10 pg of Aldicarb and penicillin G could be detected (signal-to-noise ratio>5) under full-scan CAD conditions.