A Geographic Information Systems–Based Analysis of Supercells across Oklahoma from 1994 to 2003

Abstract
Oklahoma is a region that is well known for its high frequency of severe thunderstorms, which vary in activity, mode, and coverage. In particular, this region experiences a significant number of highly organized supercell thunderstorms that pose hazards such as high winds, large hail, and tornadoes. This demonstration study focuses on the development and analysis of a 10-yr sample of supercell storms resulting from organized severe weather events in Oklahoma. Geographic information systems (GIS) were used as the primary tool to develop and analyze the 10-yr supercell dataset. The use of GIS technologies within the field of meteorology has increased dramatically in recent years and will likely continue as additional atmospheric science data formats become available in popular GIS software packages such as the Environmental Systems Research Institute’s ArcGIS series. For this specific study, GIS served as a critical component for developing individual georeferenced storm features and analyzing the life span and characteristics of 943 supercell thunderstorms. The results of a series of spatial storm frequency, initiation, termination, and direction analyses are presented. Results revealed that for the period spanning 1994–2003 supercell storms resulting from organized severe weather events were most frequent across several regions, including east-central Oklahoma, southwest Oklahoma, and west-central through northeast Oklahoma, with an overall mean track from the southwest to northeast. Supercell tracks were predominantly southwesterly during the first 5 months of the year, northwesterly from June through September, and once again southwesterly from October through the end of the year. A final set of analyses and examples illustrate the utility of storm feature–based climatologies.
Keywords