Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator

Abstract
Flowing water contains not only mechanical kinetic energy, but also the electrostatic energy owing to the triboelectric charges caused by its contact with surrounding media such as air. In this paper, a water wheel hybridized triboelectric nanogenerator (TENG), composed of a water-TENG part and a disk-TENG part, has been developed for simultaneously harvesting the two types of energies from the tap water flowing from a household faucet. The wheel blades of the hybridized TENG are composed by superhydrophobic polytetrafluoroethylene (PTFE) thin films with nanostructures, which are used as water-TENG to harvest the electrostatic energy from the flowing water. In addition, the flowing water impacted on the wheel blades also causes the rotation motion of disk-TENG and can be used to harvest the mechanical kinetic energy. The short-circuit current of the water-TENG and the disk-TENG at a flowing water rate of 54 mL/s can reach 12.9 and 3.8 μA, respectively. The hybridized TENG is also demonstrated to harvest wind energy and acts as a self-powered sensor to detect the flowing water rate and wind speed. All these results show the potentials of the hybridized TENG for harvesting multiple types of energies from the environment.