Nonlinearity in the Dynamic Properties of Vulcanized Rubber Compounds

Abstract
Measurements are described of the dynamic properties of rubber, loaded with various amounts and types of filler, when subjected to mechanical vibration in simple shear at amplitudes from 0 to 3 per cent shear in the frequency range 20 to 120 c.p.s. The decrease of dynamic modulus with increasing amplitude is shown, for a wide range of filler types and concentrations, to be determined by the amount of stiffening produced by the filler. This relationship is not influenced by variations in the vulcanizing ingredients, reasonable variations in state of vulcanization, addition of softener, or imposition of static shear strain. Rubber compounds stiffened by mixture with, or chemical combination of, other polymers exhibit a smaller order of nonlinearity than that described above and also exhibit much lower hysteresis values within the amplitude range 0 to 3 per cent shear.