LDV measurements of an air–-solid two-phase flow in a horizontal pipe

Abstract
Measurements of air and solid velocities were made in an air-solid two-phase flow in a horizontal pipe by the use of a laser-Doppler velocimeter (LDV). The pipe was 30 mm inner diameter, and two kinds of plastic particles, 0.2 and 3.4 mm in diameter, were conveyed in addition to fine particles (ammonium chloride) for air-flow detection. The air velocities averaged over the pipe cross section ranged from 6 to 20m/s and the solid-to-air mass-flow ratio was up to 6. Simultaneous measurements of both air and 0.2 mm particle velocities were found possible by setting threshold values against the pedestal and Doppler components of the photomultiplier signal.As the loading ratio increased and the air velocity decreased, mean-velocity distributions of both phases increased asymmetrical tendency. I n the presence of 0.2mm particles, a flattening of the velocity profile was remarkable. The effects of the solid particles on air-flow turbulence varied greatly with particle size. That is, 3.4 mm particles increased the turbulence markedly, while 0-2 mm ones reduced it. The probability-density function of the air flow deviated from the normal distribution (Gaussian) in the presence of particles. Finally, the frequency spectra of air-flow turbulence were obtained in the presence of 0.2 mm particles by using a fast Fourier transform (FFT). As a result, it was found that t,he higher-frequency components increased with increasing loading ratio.