Guidelines for the Management of Adults with Hospital-acquired, Ventilator-associated, and Healthcare-associated Pneumonia

Abstract
Since the initial 1996 American Thoracic Society (ATS) guideline on nosocomial pneumonia, a number of new developments have appeared, mandating a new evidence-based guideline for hospital-acquired pneumonia (HAP), including healthcare-associated pneumonia (HCAP) and ventilator-associated pneumonia (VAP). This document, prepared by a joint committee of the ATS and Infectious Diseases Society of America (IDSA), focuses on the epidemiology and pathogenesis of bacterial pneumonia in adults, and emphasizes modifiable risk factors for infection. In addition, the microbiology of HAP is reviewed, with an emphasis on multidrug-resistant (MDR), bacterial pathogens, such as Pseudomonas aeruginosa, Acinetobacter species, and methicillin-resistant Staphylococcus aureus. Controversies about diagnosis are discussed, emphasizing initial examination of lower respiratory tract samples for bacteria, and the rationale for both clinical and bacteriologic approaches, using either "semiquantitative" or "quantitative" microbiologic methods that help direct selection of appropriate antibiotic therapy. We also provide recommendations for additional diagnostic and therapeutic evaluations in patients with nonresolving pneumonia. This is an evidence-based document that emphasizes the issues of VAP, because there are far fewer data available about HAP in nonintubated patients and about HCAP. By extrapolation, patients who are not intubated and mechanically ventilated should be managed like patients with VAP, using the same approach to identify risk factors for infection with specific pathogens. The major goals of this evidence-based guideline for the management of HAP, VAP, and HCAP emphasize early, appropriate antibiotics in adequate doses, while avoiding excessive antibiotics by de-escalation of initial antibiotic therapy, based on microbiologic cultures and the clinical response of the patient, and shortening the duration of therapy to the minimum effective period. The guideline recognizes the variability of bacteriology from one hospital to another and from one time period to another and recommends taking local microbiologic data into account when adapting treatment recommendations to any specific clinical setting. The initial, empiric antibiotic therapy algorithm includes two groups of patients: one with no need for broadspectrum therapy, because these patients have early-onset HAP, VAP, or HCAP and no risk factors for MDR pathogens, and a second group that requires broad-spectrum therapy, because of late-onset pneumonia or other risk factors for infection with MDR pathogens. Some of the key recommendations and principles in this new, evidence-based guideline are as follows: HCAP is included in the spectrum of HAP and VAP, and patients with HCAP need therapy for MDR pathogens. A lower respiratory tract culture needs to be collected from all patients before antibiotic therapy, but collection of cultures should not delay the initiation of therapy in critically ill patients. Either "semiquantitative" or "quantitative" culture data can be used for the management of patients with HAP. Lower respiratory tract cultures can be obtained bronchoscopically or nonbronchoscopically, and can be cultured quantitatively or semiquantitatively. Quantitative cultures increase specificity of the diagnosis of HAP without deleterious consequences, and the specific quantitative technique should be chosen on the basis of local expertise and experience. Negative lower respiratory tract cultures can be used to stop antibiotic therapy in a patient who has had cultures obtained in the absence of an antibiotic change in the past 72 hours. Early, appropriate, broad-spectrum, antibiotic therapy should be prescribed with adequate doses to optimize antimicrobial efficacy. An empiric therapy regimen should include agents that are from a different antibiotic class than the patient has recently received. Combination therapy for a specific pathogen should be used judiciously in the therapy of HAP, and consideration should be given to short-duration (5 days) aminoglycoside therapy, when used in combination with a P-lactam to treat P. aeruginosa pneumonia. Linezolid is an alternative to vancomycin, and unconfirmed, preliminary data suggest it may have an advantage for proven VAP due to methicillin-resistant S. aureus. Colistin should be considered as therapy for patients with VAP due to a carbapenem-resistant Acinetobacter species. Aerosolized antibiotics may have value as adjunctive therapy in patients with VAP due to some MDR pathogens. De-escalation of antibiotics should be considered once data are available on the results of lower respiratory tract cultures and the patient's clinical response. A shorter duration of antibiotic therapy (7 to 8 days) is recommended for patients with uncomplicated HAP, VAP, or HCAP who have received initially appropriate therapy and have had a good clinical response, with no evidence of infection with nonfermenting gram-negative bacilli.