Abstract
Sol–gel routes to metal oxide nanoparticles in organic solvents under exclusion of water have become a versatile alternative to aqueous methods. In comparison to the complex aqueous chemistry, nonaqueous processes offer the possibility of better understanding and controlling the reaction pathways on a molecular level, enabling the synthesis of nanomaterials with high crystallinity and well-defined and uniform particle morphologies. The organic components strongly influence the composition, size, shape, and surface properties of the inorganic product, underlining the demand to understand the role of the organic species at all stages of these processes for the development of a rational synthesis strategy for inorganic nanomaterials.