Abstract
The theory of hydrodynamic stability and the impact on it of recent work with turbulent spots is discussed. Emmons's (1951) assumptions about the growth and interaction of turbulent spots are found experimentally to be substantially correct. In particular it is shown that the region of turbulent flow on a flat plate is simply the sum of the areas that would be obtained if all spots grew independently. An investigation of the conditions required for breakdown to turbulence near a wall, that is, to initiate a turbulent spot, suggests that regardless of how disturbances are generated in a laminar boundary layer and independent of both the Reynolds number and the spatial extent of the disturbances, breakdown to turbulence occurs by the initiation of a turbulent spot at all points at which the velocity fluctuation exceeds a critical intensity. Over most of the layer this intensity is about 0·2 times the free-stream velocity. The Reynolds number is important merely in respect of the growth of disturbances prior to breakdown.

This publication has 5 references indexed in Scilit: