Abstract
Cultured endothelial cells provide a model for the study of interactions of vasoactive peptides with endothelium. Endothelial cell cultured from veins of human umbilical cords contain both angiotensin I converting enzyme (kininase II) and angiotensinase activities. Intact monolayers of cells can both activate angiotensin I and inactivate bradykinin when the peptides are added to culture flasks in protein-free medium. Intact suspended cells or lysed cells convert angiotensin I to angiotensin II, inactivate bradykinin, and hydrolyze hippuryldiglycine to hippuric acid and diglycine. These actions are inhibited by SQ 20881, the specific inhibitor of converting enzyme. The kininase activity of endothelial cells was partially inhibited by antibody to human lung converting enzyme. Endothelial cells also inactivate longer analogs of bradykinin, such as kallidin, methionyl-lysyl bradykinin, and bradykinin coupled covalently to 500,000 mol wt dextran. The endothelial cells retained converting enzyme activity through four successive subcultures, indicating that the enzyme is synthesized by the cells surface, and it is apparently a marker for endothelial cells, since cultured human fibroblasts, smooth muscle cells, and baby hamster kidney cells do not have it. Endothelial cells also contain an aminopheptidase which hydrolyzes both angiotensin II and the synthetic substrate, alpha-L-aspartyl beta-naphthylamide. The angiotensinase activity increased when the cells were lysed, which suggests that the enzyme is localized within the cells, Hydrolysis of both alpha-L-aspartyl beta-naphthylamide and angiotensin II was inhibited by omicron-phenanthroline, indicating that the enzyme is an A-tipe anigotensinase.