In Vitro Determination of Respimat® Dose Delivery in Children: An Evaluation Based on Inhalation Flow Profiles and Mouth–Throat Models

Abstract
Background: Aerosol therapy in young children can be difficult. A realistic model based on handling studies and in vitro investigations can complement clinical deposition studies and be used to enable dose-to-the-lung (DTL) predictions. Methods: Predictions on dose delivery to the lung were based on (1) representative inhalation flow profiles from children enrolled in a Respimat® handling study, (2) in vitro measurement of the fine-particle DTL using mouth–throat models derived from nuclear magnetic resonance/computed tomography (NMR/CT) scans of children, and (3) a mathematical model to predict the tiotropium DTL. Accuracy of the prediction was confirmed using pharmacokinetic (PK) data from children with cystic fibrosis enrolled in a phase 3 clinical trial of tiotropium Respimat with valved holding chamber (VHC). Results: Representative inhalation flow profiles for each age group were obtained from 56 children who successfully inhaled a volume >0.15 L from the Respimat with VHC. Average dimensions of the mouth–throat region for 38 children aged 1–in vitro measurement and were 5.1±1.1%, 15.6%±1.4%, 17.9%±1.5%, and 37.1%±1.8% of the delivered dose for child models 0–in vitro DTL per body mass (μg/kg [±SD]) were 0.031±0.014, 0.066±0.031, 0.058±0.024, and 0.059±0.029, respectively, compared to 0.046 in adults. Therefore, efficacy of the treatment was not negatively impacted in spite of the seemingly low percentages of the DTL. Conclusions: We conclude that the combination of real-life inhalation profiles with respective mouth–throat models and in vitro determination of delivered DTL is a good predictor of the drug delivery to children via the Respimat with VHC. The data provided can be used to support data from appropriate clinical trials.