Effect of fluorine on the diffusion of boron in ion implanted Si

Abstract
Ion implants of 1 keV B+11 and 5 keV BF2+, to a dose of 1×1015/cm2 at a tilt angle of 0°, were implanted into preamorphized (Si+,70 keV, 1×1015/cm2) wafers. These samples were rapid thermal annealed in an ambient of 33 ppm of oxygen in N2 at very short times (<0.1 s spike anneals) at 1000 and 1050 °C to investigate the effects of the fluorine in BF2 implants on transient enhanced diffusion (TED). By using a relatively deep preamorphization of 1450 Å, any difference in damage between the typically amorphizing BF2 implants and the nonamorphizing B implants is eliminated because the entire profile (<800 Å after annealing) is well contained within the amorphous layer. Upon annealing, the backflow of interstitials from the end-of-range damage from the preamorphization implant produces TED of the B in the regrown layer. This allows the chemical effect of the fluorine on the TED of the B in the regrown Si to be studied independent of the damage. The secondary ion mass spectroscopy results show that upon annealing, the presence of fluorine reduces the amount of B diffusion by 30% for the 1000 °C spike anneal, and by 44% for the 1050 °C spike anneal. This clearly illustrates there is a dramatic effect of F on TED of B independent of the effects of implant damage. Analysis of the temperature dependence of the enhancement factors point to transient enhanced diffusion not boridation as the source of the interstitials.