Abstract
Three experimental investigations are performed on the liquid–solid contact state at the instant when a liquid comes in contact with a heating surface in the transition-boiling regime between the maximum evaporation rate point and the spheroidal state: (1) measuring the piezoelectric potential by means of a quartz oscillator being placed on the heating surface, (2) monitoring the boiling sound generated at the instant of liquid–solid contact using a condenser microphone, and (3) observation of drop behavior, by means of high-speed photography. The information obtained from these three investigations is synthesized to quantify the liquid–solid contact state. The study has disclosed the roles of thermal properties and heating surface temperatures on the endurance time of the instantaneous liquid–solid contact state and the relationship between the critical bubble radius and the measured vapor–liquid interfacial pressure difference.