Dynamic Visual Acuity during Passive Head Thrusts in Canal Planes

Abstract
We sought to determine whether the dynamic visual acuity (DVA) test, which has been used to measure the function of the two horizontal semicircular canals (SCCs), could be adapted to measure the individual function of all six SCCs using transient, rapid, unpredictable head rotation stimuli (head thrusts) in the direction of maximum sensitivity of each SCC. We examined head-thrust DVA (htDVA) performance in 19 healthy control subjects, five patients before and six patients after plugging of one superior SCC for treatment of superior canal dehiscence, and two subjects with unilateral vestibular deafferentation (UVD) by vestibular neurectomy. We compared htDVA results for each SCC to vestibulo-ocular reflex gains measured using 3-D scleral coil recordings during a passive head-thrust-test paradigm. Individuals with normal vestibular function had similar htDVA scores for each of the six directions (canals) tested (mean 0.058 ± 0.050 LogMAR). Individuals tested after surgical plugging of one superior SCC were similar to normal for all SCCs except the plugged SCC, which had significantly worse htDVA scores (mean 0.270 ± 0.08 LogMAR). Individuals with UVD had significantly worse htDVA scores for head rotations maximally exciting any of the ipsilesional SCC (mean 0.317 ± 0.129 LogMAR) and scores similar to normal subjects for contralesional rotations (0.063 ± 0.051 LogMAR). These findings suggest that the htDVA test, which does not require scleral coil placement, magnetic field coils, or expensive oculography equipment, can provide a useful quantitative measure of individual SCC function.