Phosphorylation and Recycling Kinetics of g Protein-Coupled Receptors

Abstract
The rate of ligand-induced phosphorylation of the V2 and V1a vasopressin receptors was characterized in HEK 293 cells. Both receptors were phosphorylated predominantly by GRKs, and the V1a receptor was also phosphorylated by protein kinase C regardless of the presence or absence of ligand. Phosphorylation of the V1aR catalyzed by GRKs reached maximal values at the shortest measured time: 15 seconds, and decayed rapidly with a t1/2 of 6 min in the continuous presence of AVP. In agreement with the hypothesis that dephosphorylation must precede receptor recycling to the cell surface, the V1aR returned rapidly to the cell surface after removal of the hormone from the medium. Phosphate incorporation into the V2R proceeded at a slower pace, and the internalized phosphorylated receptor failed to recycle to the cell surface and retained its phosphate for a long time in the presence or absence of ligand. A single mutation in the carboxy terminus of the V2R accelerated de-phosphorylation of the protein and conferred recycling properties to the V2R. These experiments provided molecular evidence for the hypothesis that internalization is required for de-phosphorylation and recycling of reactivated G protein coupled receptors to the cell surface.

This publication has 11 references indexed in Scilit: