Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

Abstract
EEG-based Brain-computer interfaces (BCI) are facing grant challenges in their real-world applications. The technical difficulties in developing truly wearable multi-modal BCI systems that are capable of making reliable real-time prediction of users’ cognitive states under dynamic real-life situations may appear at times almost insurmountable. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report our attempt to develop a pervasive on-line BCI system by employing state-of-art technologies such as multi-tier fog and cloud computing, semantic Linked Data search and adaptive prediction/classification models. To verify our approach, we implement a pilot system using wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end fog servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end cloud servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch and the UCSD Movement Disorder Center to use our system in real-life personal stress and in-home Parkinson’s disease patient monitoring experiments. We shall proceed to develop a necessary BCI ontology and add automatic semantic annotation and progressive model refinement capability to our system.