Abstract
A discussion of the applicability of an effective-viscosity approach to turbulent flow suggests that there are flow situations where the approach is valid and yet present hypotheses fail. The general form of an effective-viscosity formulation is shown to be a finite tensor polynomial. For two-dimensional flows, the coefficients of this polynomial are evaluated from the modelled Reynolds-stress equations of Launder, Reece & Rodi (1975). The advantage of the proposed effective-viscosity formulation, equation (4.3), over isotropie-viscosity hypotheses is that the whole velocity-gradient tensor affects the predicted Reynolds stresses. Two notable consequences of this are that (i) the complete Reynolds-stress tensor is realistically modelled and (ii) the influence of streamline curvature on the Reynolds stresses is incorporated.

This publication has 6 references indexed in Scilit: