Transferability of Type 2 Diabetes Implicated Loci in Multi-Ethnic Cohorts from Southeast Asia

Abstract
Recent large genome-wide association studies (GWAS) have identified multiple loci which harbor genetic variants associated with type 2 diabetes mellitus (T2D), many of which encode proteins not previously suspected to be involved in the pathogenesis of T2D. Most GWAS for T2D have focused on populations of European descent, and GWAS conducted in other populations with different ancestry offer a unique opportunity to study the genetic architecture of T2D. We performed genome-wide association scans for T2D in 3,955 Chinese (2,010 cases, 1,945 controls), 2,034 Malays (794 cases, 1,240 controls), and 2,146 Asian Indians (977 cases, 1,169 controls). In addition to the search for novel variants implicated in T2D, these multi-ethnic cohorts serve to assess the transferability and relevance of the previous findings from European descent populations in the three major ethnic populations of Asia, comprising half of the world's population. Of the SNPs associated with T2D in previous GWAS, only variants at CDKAL1 and HHEX/IDE/KIF11 showed the strongest association with T2D in the meta-analysis including all three ethnic groups. However, consistent direction of effect was observed for many of the other SNPs in our study and in those carried out in European populations. Close examination of the associations at both the CDKAL1 and HHEX/IDE/KIF11 loci provided some evidence of locus and allelic heterogeneity in relation to the associations with T2D. We also detected variation in linkage disequilibrium between populations for most of these loci that have been previously identified. These factors, combined with limited statistical power, may contribute to the failure to detect associations across populations of diverse ethnicity. These findings highlight the value of surveying across diverse racial/ethnic groups towards the fine-mapping efforts for the casual variants and also of the search for variants, which may be population-specific. Type 2 diabetes mellitus (T2D) is a chronic disease which can lead to complications such as heart disease, stroke, hypertension, blindness due to diabetic retinopathy, amputations from peripheral vascular diseases, and kidney disease from diabetic nephropathy. The increasing prevalence and complications of T2D are likely to increase the health and economic burden of individuals, families, health systems, and countries. Our study carried out in three major Asian ethnic groups (Chinese, Malays, and Indians) in Singapore suggests that the findings of studies carried out in populations of European ancestry (which represents most studies to date) may be relevant to populations in Asia. However, our study also raises the possibility that different genes, and within the genes different variants, may confer susceptibility to T2D in these populations. These findings are particularly relevant in Asia, where the greatest growth of T2D is expected in the coming years, and emphasize the importance of studying diverse populations when trying to localize the regions of the genome associated with T2D. In addition, we may need to consider novel methods for combining data across populations.