Abstract
III-Nitride semiconductors are the materials of choice for state-of-the-art opto-electronic and high-power electronic applications. Through the incorporation of magnetic ions, like transition metals and rare-earths, III-Nitrides have further extended their applicability to spintronic devices. However, in most III-Nitrides the low solubility of the magnetic ions leads to the formation of secondary phases that are often responsible for the observed magnetic behavior of the layers. The present review summarizes the research dedicated to the understanding of the basic properties, from the fabrication to the performance, of III-Nitride-based phase-separated magnetic systems containing embedded magnetic nanostructures as suitable candidates for spintronics applications.
Funding Information
  • Austrian Science Fund (V478-N36)