An Ultra-Wideband 80 GHz FMCW Radar System Using a SiGe Bipolar Transceiver Chip Stabilized by a Fractional-N PLL Synthesizer

Abstract
A radar system with an ultra-wide FMCW ramp bandwidth of 25.6 GHz (≈32%) around a center frequency of 80 GHz is presented. The system is based on a monostatic fully integrated SiGe transceiver chip, which is stabilized using conventional fractional-N PLL chips at a reference frequency of 100 MHz. The achieved in-loop phase noise is ≈ -88 dBc/Hz (10 kHz offset frequency) for the center frequency and below ≈-80 dBc/Hz in the wide frequency band of 25.6 GHz for all offset frequencies >;1 kHz. The ultra-wide PLL-stabilization was achieved using a reverse frequency position mixer in the PLL (offset-PLL) resulting in a compensation of the variation of the oscillators tuning sensitivity with the variation of the N-divider in the PLL. The output power of the transceiver chip, as well as of the mm-wave module (containing a waveguide transition), is sufficiently flat versus the output frequency (variation <;3 dB). In radar measurements using the full bandwidth an ultra-high spatial resolution of 7.12 mm was achieved. The standard deviation between repeated measurements of the same target is 0.36 μm.

This publication has 23 references indexed in Scilit: