Ionization Processes and Charge-State Distribution in a Highly Ionized High-ZLaser-Produced Plasma

Abstract
The charge-state distribution in a well-characterized highly ionized Au plasma was accurately determined using time-resolved x-ray spectroscopy. Simultaneous measurements of the electron temperature and density allow the first direct comparisons with nonlocal thermodynamic equilibrium model predictions for the charge-state distribution of a highly ionized high- Z plasma in a nonradiative environment. The importance of two-electron atomic processes is clearly demonstrated.